Wednesday, October 10, 2012

GMO/ GE FOODS and MONSANTO world control of all plants and animals


5. GMO/ GE FOODS and MONSANTO world control of all plants and animals
GMO,/GE foods cause sterility, birth defects, organ damage, cancer, DNA/ gentic changes, and death. Making it illegal to grow backyard gardens !

Please link here to return to
AGENDA 21/ SUSTAINABLE DEVELOPMENT: Population Cut/ Cull


Seeds Of Death - Full Movie

You and your baby's genetic DNA can be changed permanently -
American Academy of Environmental Medicine say ALL doctors should be prescribing a GMO free diet to all patients - fertility problems - Immune system problems - Accelerated aging - Organ damage -gastrointestinal problems (leaky gut), Dysfunctional regulation of Cholesterol and Insulin etc. - In Canada, Monsanto tried to bribe scientists to get Bovine growth hormone approval - Scientists who prove negative results from GMO use are harassed, fired, lose funding etc. - fewer baby (5X  death rate), smaller babies, sterile babies defective etc. etc. - Please watch !

In preparation of the global March Against Monsanto, you are invited to watch our award-winning documentary Seeds of Death free.

 
The leaders of Big Agriculture--Monsanto, DuPont, Syngenta--are determined that world's populations remain ignorant about the serious health and environmental risks of genetically modified crops and industrial agriculture. Deep layers of deception and corruption underlie both the science favoring GMOs and the corporations and governments supporting them.

This award-winning documentary, Seeds of Death, exposes the lies about GMOs and pulls back the curtains to witness our planet's future if Big Agriculture's new green revolution becomes our dominant food supply.

A Question and Answer fact sheet deconstructing Monsanto's GM claims and Big Agriculture's propaganda to accompany the film is available online: http://prn.fm/2013/05/24/gary-null-and-richard-gale-seeds-of-death-understanding-the-deception-behind-gmos/#axzz2U3OTG9Mv



Patent For a Pig




Just Say No to GMO music video http://www.naturalnews.com/NoGMO.html


What do Monsanto, GMO's, Corn, and Round Up have in common?


Not sure if your organic foods are GMO free? Contact the companies and ask Or better still, ask them to label it !



Danger of Genetically Modified Foods (GMO) with Dr. OZ

Health Concerns: There have been no studies tracking the long-term effects GMOs may have on humans. Researchers have shown a number a number of health risks: exposure to allergens, antibiotic resistance, endocrine disruption, reproductive disorders and accelerated aging.

Safety Concerns: The FDA does not treat GMOs any differently than conventionally grown crops. Companies can chose to go through a voluntary safety consultation but no testing is required.

Farming concerns: When accidental or perhaps deliberate cross pollination by Monsanto GMO pollen occurs, Monsanto aggressively takes farmers to court claiming theft of their product. They claim all the farmers' crop and seed as their own which can result in a devastating lose to a farmer who may have cross pollinated for decades, the old fashion way, to produce his own superior seed and crop.
Ethics: Some feel that GMOs are a violation of nature and an infringement on a natural organism’s intrinsic value.

Need for Labels: Despite the fact that 9 in 10 Americans support labeling GMOs, the FDA does not require the labeling of GMOs. Without proper labels, it is difficult for consumers to make educated choices about the foods they are purchasing.


Soft kill Frankenfoods



Jeffrey M. Smith: The GMO Threat
Non-GMO Shopping Guide http://www.nongmoshoppingguide.com/

Smith documents how consumption of genetically modified foods has been directly linked with reproductive problems, immune system deficiencies, accelerated ageing, organ damage and gastrointestinal problems. The immune system problem has been seen consistently in mice and rats who are fed GMO food, explains Smith, and now since humans have started consuming genetically modified foods, auto-immune diseases and allergies have increased.



Jeffrey Smith: Dangers of GMO Foods C2C 02.09.2012
www.responsibletechnology.org


Extremely shocking information - Will make you want to change your diet if you have not already done so.



How GMO foods alter organ function and pose a very real health threat to humans
www.naturalnews.com
www.organicconsumers.org
www.foodinvestigations.com
The Health Ranger, Mike Adams, explains how studies in cell research have demonstrated the mechanism by which micro RNA from genetically engineered foods may alter organ function in humans.


How Genetically Modified Foods Could Affect Our Health in Unexpected Ways Yet another reason to test GMOs for safety.
By Ari LeVaux
Jan 11, 2012
http://www.alternet.org/story/153737/how_genetically_modified_foods_could_affect_our_health_in_unexpected_ways?paging=off

Chinese researchers have found small pieces of rice ribonucleic acid (RNA) in the blood and organs of humans who eat rice. The Nanjing University-based team showed that this genetic material will bind to receptors in human liver cells and influence the uptake of cholesterol from the blood.

The type of RNA in question is called microRNA (abbreviated to miRNA) due to its small size. MiRNAs have been studied extensively since their discovery ten years ago, and have been implicated as players in several human diseases including cancer, Alzheimer's, and diabetes. They usually function by turning down or shutting down certain genes. The Chinese research provides the first in vivo (actual in-life, not in-lab) example of ingested plant miRNA surviving digestion and influencing human cell function in this way.

Should the research survive scientific scrutiny -- a serious hurdle -- it could prove a game changer in many fields. It would mean that we're eating not just vitamins, protein, and fuel, but gene regulators as well.

That knowledge could deepen our understanding of many fields, including cross-species communication, co-evolution, and predator-prey relationships. It could illuminate new mechanisms for some metabolic disorders and perhaps explain how some herbal and modern medicines function.

This study had nothing to do with genetically modified (GM) food, but it could have implications on that front. The work shows a pathway by which new food products, such as GM foods, could influence human health in previously unanticipated ways.

Monsanto's website states, "There is no need for, or value in testing the safety of GM foods in humans." This viewpoint, while good for business, is built on an understanding of genetics circa 1960. It follows what's called the "Central Dogma" of genetics, which postulates a one-way chain of command between DNA and the cells DNA governs.

The Central Dogma resembles the process of ordering a pizza. The DNA codes for the kind of pizza it wants, and orders it. The RNA is the order slip, which communicates the specifics of that pizza to the cook. The finished and delivered pizza is analogous to the protein that DNA codes for.

We've known for decades that the Central Dogma, though basically correct, is overly simplistic. For example: miRNAs that don't code for anything, pizza or otherwise, travel within cells silencing genes that are being expressed. So while one piece of DNA is ordering a pizza, it could also be bombarding the pizzeria with RNA signals that can cancel the delivery of other pizzas ordered by other bits of DNA.

Researchers have been using this phenomena to their advantage in the form of small, engineered RNA strands that are virtually identical to miRNA. In a technique called RNA interference, or RNA knockdown, these small bits of RNA are used to turn off, or "knock down," certain genes.

RNA knockdown was first used commercially in 1994 to create the Flavor Savr, a tomato with increased shelf life. In 2007, several research teams began reporting success at engineering plant RNA to kill insect predators, by knocking down certain genes. As reported in MIT's Technology Review on November 5, 2007, researchers in China used RNA knockdown to make:

...cotton plants that silence a gene that allows cotton bollworms to process the toxin gossypol, which occurs naturally in cotton. Bollworms that eat the genetically engineered cotton can't make their toxin-processing proteins, and they die.

And, Researchers at Monsanto and Devgen, a Belgian company, made corn plants that silence a gene essential for energy production in corn rootworms; ingestion wipes out the worms within 12 days.

Humans and insects have a lot in common, genetically. If miRNA can in fact survive the gut then it's entirely possible that miRNA intended to influence insect gene regulation could also affect humans.

Monsanto's claim that human toxicology tests are unwarranted is based on the doctrine of "substantial equivalence." According to substantial equivalence, comparisons between GM and non-GM crops need only investigate the end products of DNA expression. New DNA is not considered a threat in any other way.

"So long as the introduced protein is determined to be safe, food from GM crops determined to be substantially equivalent is not expected to pose any health risks," reads Monsanto's web page.

In other words, as long as the final product -- the pizza, as it were -- is non-toxic, the introduced DNA isn't any different and doesn't pose a problem. For what it's worth, if that principle were applied to intellectual property law, many of Monsanto's patents would probably be null and void.

Chen-Yu Zhang, the lead researcher on the Chinese RNA study, has made no comment regarding the implications of his work for the debate over the safety of GM food. Nonetheless, these discoveries help give shape to concerns about substantial equivalence that have been raised for years from within the scientific community.

In 1999, a group of scientists wrote a letter titled "Beyond Substantial Equivalence" to the prestigious journal Nature. In the letter, Erik Millstone et. al. called substantial equivalence "a pseudo-scientific concept" that is "inherently anti-scientific because it was created primarily to provide an excuse for not requiring biochemical or toxicological tests."

To these charges, Monsanto responded: "The concept of substantial equivalence was elaborated by international scientific and regulatory experts convened by the Organization for Economic Co-operation and Development (OECD) in 1991, well before any biotechnology products were ready for market."

This response is less a rebuttal than a testimonial to Monsanto's prowess at handling regulatory affairs. Of course the term was established before any products were ready for the market. Doing so was a prerequisite to the global commercialization of GM crops. It created a legal framework for selling GM foods anywhere in the world that substantial equivalence was accepted. By the time substantial equivalence was adopted, Monsanto had already developed numerous GM crops and was actively grooming them for market.

The OECD's 34 member nations could be described as largely rich, white, developed, and sympathetic to big business. The group's current mission is to spread economic development to the rest of the world. And while the mission has yet to be accomplished, OECD has helped Monsanto spread substantial equivalence globally.

Many GM fans will point out that if we do toxicity tests on GM foods, we should also have to do toxicity testing on every other kind of food in the world.

But we've already done the testing on the existing plants. We tested them the hard way, by eating strange things and dying, or almost dying, over thousands of years. That's how we've figured out which plants are poisonous. And over the course of each of our lifetimes we've learned which foods we're allergic to.

All of the non-GM breeds and hybrid species that we eat have been shaped by the genetic variability offered by parents whose genes were similar enough that they could mate, graft, or test tube baby their way to an offspring that resembled them.

A tomato with fish genes? Not so much. That, to me, is a new plant and it should be tested. We shouldn't have to figure out if it's poisonous or allergenic the old fashioned way, especially in light of how new-fangled the science is.

It's time to re-write the rules to acknowledge how much more complicated genetic systems are than the legal regulations -- and the corporations that have written them -- give credit.

Monsanto isn't doing itself any PR favors by claiming "no need for, or value in testing the safety of GM foods in humans." Admittedly, such testing can be difficult to construct -- who really wants to volunteer to eat a bunch of GM corn just to see what happens? At the same time, if companies like Monsanto want to use processes like RNA interference to make plants that can kill insects via genetic pathways that might resemble our own, some kind of testing has to happen.

A good place to start would be the testing of introduced DNA for other effects -- miRNA-mediated or otherwise -- beyond the specific proteins they code for. But the status quo, according to Monsanto's web page, is:
There is no need to test the safety of DNA introduced into GM crops. DNA (and resulting RNA) is present in almost all foods. DNA is non-toxic and the presence of DNA, in and of itself, presents no hazard.

Given what we know, that stance is arrogant. Time will tell if it's reckless.

There are computational methods of investigating whether unintended RNAs are likely to be knocking down any human genes. But thanks to this position, the best we can do is hope they're using them. Given it's opposition to the labeling of GM foods as well, it seems clear that Monsanto wants you to close your eyes, open your mouth, and swallow.

It's time for Monsanto to acknowledge that there's more to DNA than the proteins it codes for -- even if it's for no other reason than the fact that RNA alone is a lot more complicated that Watson and Crick could ever have imagined.



GMO Scientists Claims Sterility Side Effects Good For Earth

A shocking new study conducted by French scientists which shows that rats fed on Monsanto's genetically modified corn suffered cancer and premature death has been met with a furious response from GMO apologists, who are desperately trying to cast doubt on the the study in an effort to discredit its findings.

50 percent of male and 70 percent of female rats fed on a diet containing NK603 -- a genetically modified corn produced by Monsanto -- or those exposed to Monsanto's Roundup weedkiller -- suffered tumors and multiple organ damage, causing them to die prematurely, the study found. [What this says is that eating GMO corn is equivalent to drinking a poisonous weedkiller ! ]  http://www.infowars.com/monsanto-apologists-attempt-to-spin-shocking-gmo-study/

The study was conducted by French scientists at the University of Caen and published in the journal Food and Chemical Toxicology. [View video directly below]

Almost immediately after the findings were made public at a press conference in London, numerous other scientists rushed to Monsanto's defense and claimed that the study was inaccurate.

"This strain of rat is very prone to mammary tumors particularly when food intake is not restricted," said Tom Sanders, head of the nutritional sciences research division at King's College London. "The statistical methods are unconventional ... and it would appear the authors have gone on a statistical fishing trip."

However, the statistical methods are perfectly straightforward. Only 30 percent of males and 20 percent of females in the control group of rats that were not exposed to Monsanto's products died prematurely -- meaning males were 20 per cent more likely to die prematurely after eating Monsanto corn and females a whopping 50 per cent more likely to die.


GMO, Global Alert

"Seeds must not be used for testing" !
French researchers secretly studied, for two years, 200 rats fed with transgenic [GMO] maize. Tumors, serious disorders... full-fledged slaughter. And a bomb for the GMO industry. More information http://www.gmo-global-alert.net


Farmer feeds GMO corn to his pigs: they all become sterile
Jerry Rosman, a pig farmer in Iowa, was cultivating GMO corn,(Roundup Ready and BT) and fed this corn to his pigs. Result: his sows became infertile, and then after one year he went bankrupt. See the whole interview here: http://vimeo.com/20237421

Is it an incident isolated to Iowa ? Check this article from Greenpeace; http://www.greenpeace.org/india/en/news/no-need-for-condoms-ge-corn/
 "Austrian scientists fed mice over a course of 20 weeks a mixture of 33 percent Monsanto GE corn (NK 603 x MON 810) and non-GE corn. These mice gave birth to less babies and lighter babies in their third and fourth litters. Mice fed on non-GE corn had babies as normal. These differences are statistically significant."

Other studies:

 "The scientist added flour from a GM soya bean - produced by Monsanto to be resistant to its pesticide, Roundup - to the food of female rats, starting two weeks before they conceived, continuing through pregnancy, birth and nursing. Others were given non-GM soya and a third group was given no soya at all.

She found that 36 per cent of the young of the rats fed the modified soya were severely underweight, compared to 6 per cent of the offspring of the other groups. More alarmingly, a staggering 55.6 per cent of those born to mothers on the GM diet perished within three weeks of birth, compared to 9 per cent of the offspring of those fed normal soya, and 6.8 per cent of the young of those given no soya at all."

 "A group of female rats received additionally to the stock laboratory chow 5-7g/rat/day soya flour prepared from certified RR GM-soya for two weeks before mating, during mating, pregnancy, and an increased daily amount for every pup during lactation. The control group was fed in addition to the rat chow the same amount of traditional (Trad) soya. (...) High level of mortality (~ 55,6%) was observed with pups whose mothers received the GM-soya supplemented diets, and 36% of these pups weighed less than 20 grammas by the end of two weeks after the birth, in comparison with the Trad. soya supplemented group"


The World According to Monsanto - Trailer

After viewing trailer, it is hoped that you will view the FULL documentary directly below.



The World According to Monsanto (FULL LENGTH)
Controlling Our Food

A Documentary On Roundup, Bovine Growth Hormone (rBGH), Genetically Modified Foods - GMO's etc


On Monsanto's website (June 8, 2012), Under the subheading What is Monsanto's Role? , you will find this claim: "Sustainable agriculture is at the core of Monsanto. We are committed to developing the technologies that enable farmers to produce more crops while conserving more of the natural resources that are essential to their success." http://www.monsanto.ca/ourcommitments/Pages/SustainableAgriculture.aspx


Sound good? Well keep reading. This extended article is based on a write-up that was posted below one of the postings of a video concerning GMO which has since been taken down by YouTube.

From the video we learn that 3 Canadain scientists (Dr Shiv Chopra, Margaret Hayden, and Gerard Lambert) whistleblowers from Health Canada, were fired "for disobedience", after speaking up against Monsanto concerning rBGH and 1-2 million dollar bribe. Link here to read Another rBGH Health Scandal in Canada.

Scientist from Scotland, fired


There's nothing Monsanto is leaving untouched: corn, soybean, rice, mustard, okra, bringe oil, cauliflower, etc. Once they have established the norm: that seed can be owned as their property, royalties can be collected. We will depend on them for every seed we grow of every crop we grow. If they control seed, they control food, they know it -- it's strategic. It's more powerful than bombs. It's more powerful than guns. This is the best way to control the populations of the world.
Just a few examples of door revolvers.

The story starts in the White House, where Monsanto often got its way by exerting disproportionate influence over policymakers via the "revolving door" Link here to read article Monsanto employees and government regulatory agencies employees are the same people! and Monsanto and G.W. Bush Administration: Who Will Own the Store? and Which Side Is The Obama Administration On? .

Michael Taylor

One example is Michael Taylor, who worked for Monsanto as an attorney before being appointed as deputy commissioner of the US Food and Drug Administration (FDA) in 1991. While at the FDA, the authority that deals with all US food approvals, Taylor made crucial decisions that led to the approval of GE/GMO foods and crops. Then he returned to Monsanto, becoming the company's vice president for public policy. [Then under Obama he was appointment as a senior adviser to the Food and Drug Administration Commissioner (FDA) on food safety.] http://www.organicconsumers.org/usda_watch.cfm

Margaret Miller is another example. While working as a Monsanto researcher, she contributed to a scientific report for the FDA on Monsanto's genetically engineered bovine growth hormone. Shortly before the report was submitted, Miller left Monsanto to work at the FDA, where her first job was to review the same report! Assisting Miller was another former Monsanto researcher, Susan Sechen.

Needless to say, the FDA accepted Monsanto's findings, which became the basis for its approval of Monsanto's genetically engineered bovine growth hormone and its decision not to require labels on milk produced through the use of the artificial hormone. From dropdown Monsanto's Government Ties http://www.organicconsumers.org/monsanto/  ( You will also view a listing of many more Monsanto -government door revolvers here]
Thanks to these intimate links between Monsanto and government agencies, the US adopted GE/CMO foods and crops without proper testing, without consumer labeling and in spite of serious questions hanging over their safety. Not coincidentally, Monsanto supplies 90 percent of the GE/GMO seeds used by the US market. Monsanto's long arm stretched so far that, in the early nineties, the US Food and Drugs Agency (FDA) even ignored warnings of their own scientists, who were cautioning that GE crops could cause negative health effects.


On Monsanto's website (June 8, 2012), http://www.monsanto.ca/ourcommitments/Pages/SustainableAgriculture.aspx
Under the subheading What is Monsanto's Role? , you will find this claim: "Sustainable agriculture is at the core of Monsanto. We are committed to developing the technologies that enable farmers to produce more crops while conserving more of the natural resources that are essential to their success."

This collusion between Monsanto and the government is even more ominous when you realize that a Monsanto official told the New York Times that the corporation should not have to take responsibility for the safety of its food products. “Monsanto should not have to vouchsafe the safety of biotech food,” said Phil Angell, Monsanto’s director of corporate communications. “Our interest is in selling as much of it as possible. Assuring its safety is the FDA’s job,” Angell said. — Playing God In the Garden New York Times 10/25/98

Other tactics the company uses to stifle concerns about their products include misleading advertising, bribery and concealing scientific evidence.



MILIONS AGAINST MONSANTO - HELP !



Bad Seed - Danger of Genetically Modified Food

In the last thirty years global demand for food has doubled. In a race to feed the planet, scientists have discovered how to manipulate DNA, the blueprint of life, and produce what they claim are stronger, more disease-resistant crops. However, fears that Genetically Modified Food may not be safe for humans or the environment has sparked violent protest. Are we participating in a dangerous global nutritional experiment? This informative film helps the viewer decide if the production of genetically modified food is a panacea for world hunger or a global poison. NOW on DVD - LOADED with Bonus Features and Interviews - Cat# K596 - Go to http://www.UFOTV.com



Monsanto will own all seed

It was ruled that a farmer that plants heirloom seed that is pollinated by GM seed is owned by Monsanto. It doesn't matter how big the contamination is.

Do not accept GMO food ! It is untested and bad for you. Animals will NOT eat it if given a choice. This is another way to own us/kill us/make money. Where is our wonderful FDA? Owned.

Excerpts from "Bad Seed: The Truth About Our Food" :

Patenting life forms was and should still be illegal. Nobody owns life. Monsanto should be sued for that farmers contamination on his land.



Food's Future is Genetically Modified!



Food - The Ultimate Secret Exposed

Alex Jones addresses one of the darkest modes of power the globalists have used to control the population-- food. The adulteration of the planet's staple crops, genetically-altered species and intentionally-altered water, food and air all amount to a Eugenics operation to weaken the masses and achieve full spectrum domination.

People the world over, but especially in the United States are under chemical attack. Deadly and dangerous toxins ranging from Aspartame to Fluoride, GMO, Mercury-tainting, pesticides, cross-species chimeras, plastic compounds in chicken, high fructose corn syrup, cloned meat, rBGH and new aggressive GM species of salmon have all entered into our diets and environments-- whether we want it or not. Link here to read article Aspartame's Hidden Dangers

Many of these substances knowingly cause or are linked with sterility, low birth weight, miscarriages, smaller or deformed offspring, as well as organ failure, cancer, brain tumors and Death itself, what you DON'T know about on your grocery shelves can hurt you. Further, Alex demonstrates that a pattern of buried studies, fraudulent statistics and a will to reduce global population all point to the deliberate criminal poisoning of the food and water supply.

Suffer no fools and warn those you love about the need to stop their food from being used as a depopulation-weapon against us all. Please share this important video with everyone, so the truth about these substances can be known.



Harvest of Fear 1/12



Harvest of Fear 2/12



Harvest of Fear 3/12



Harvest of Fear 4/12



Harvest of Fear 5/12



Harvest of Fear 6/12



Harvest of Fear 7/12



Harvest of Fear 8/12



Harvest of Fear 9/12



Harvest of Fear 10/12



Harvest of Fear 11/12



Harvest of Fear 12/12



Bill Maher Talks Monsanto, Genetically Modified Food (GMOs)

Political comedian Bill Maher weighed in on Monsanto and GMOs on the June 22 2012 episode of Real Time with Bill Maher - panel included Nick Gillespie, Rachel Maddow, Mort Zuckerman & Mark Ruffalo. Yes on Prop 37 in California! http://www.sunfood.com/prop37



Reasons for Labeling of Genetically Engineered Foods
(other videos continue below article)
http://www.consumersunion.org/pdf/AMA-GE-resolutions-3-19-12.pdf
March 19, 2012

TO: AMA Council on Science and Public Health

FROM: Michael Hansen, Ph.D., Senior Scientist, Consumer Reports

RE: Resolutions 508 (Illinois) and 509 (Indiana) Supporting Federal Legislation and/or Regulations that Require Clearly Labeling Food with Genetically Engineered Ingredients

SUMMARY: Based on the scientific uncertainty surrounding both the molecular characterization of genetically engineered (GE) crops as well as the detection of potential allergenicity, there is more than enough uncertainty to decide to require labeling of foods produced via GE as a risk management measure as a way to identify unintended health effects that may occur post approval. If foods are not labeled as to GE status, it would be very difficult to even identify an unexpected health effect resulting from a GE food.

Dear Council Members:


I am writing to submit scientific evidence which strongly supports the intent of Resolutions 508 and 509 Supporting Federal Legislation and/or Regulations that Require Clearly Labeling Food with Genetically Engineered Ingredients. Consumer Union1 supports mandatory labeling for foods produced with genetically engineered (GE) ingredients for a number of reasons.

1. There has been global agreement that genetically engineered foods are different than conventionally bred foods and that all genetically engineered foods should be required to go through a safety assessment prior to approval. Codex Alimentarius is the food safety standards organization of the United Nations, and is jointly run by the Food and Agriculture Organization (FAO) and the World Health Organization (WHO).

From 2000 – 2008, there were two rounds of the Codex Alimentarius Ad Hoc Intergovernmental Task Force on Foods Derived from Biotechnology. This Task Force developed a number of documents, including a Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants (CAC/GL 45, 2003) 2; there are separate Guidelines for GE animals and GE microorganisms, as well. The World Trade Organization (WTO) considers that, in terms of food safety, the standards or guidelines of Codex Alimentarius are deemed the global science-based standard and, thus, immune to trade challenges, i.e. they are not considered to be a “non-tariff trade barrier.”

The reason for two rounds of the Codex Alimentarius Ad Hoc Intergovernmental Task Force on Foods Derived from Biotechnology came as a result of a global agreement that genetic engineering is a process that is sufficiently different from conventional breeding that foods developed via genetic engineering should go through a safety assessment before such foods are allowed on the market. For information on the ways genetic engineering differs from conventional breeding, see Hansen, 2000.3

Last year, after more than 15 years of debate, the Codex Committee on Food Labeling agreed to forward a document on labeling of GE foods to the Codex Alimentarius Commission for approval. Last July, at the conclusion of the meeting of the Codex Alimentarius Commission, the World Health Organization News put out a letter to journalists, noting that the ”Codex Alimentarius Commission has stated that governments are free to decide on whether and how to label foods derived from modern biotechnology, including foods containing geneticallymodified organisms. The labeling should be done in conformity with the text approved by the Codex Commission, to avoid a potential trade barrier. The decision, which will help inform consumers’ choices regarding genetically-modified foodstuffs, was taken at the 34th Session of the Commission, held in Geneva from 4-9 July 2011. More than 600 delegates from 145 of the 184 member countries, UN, inter-governmental and non-governmental organizations attended.”4

Unlike all other developed countries, the US Food and Drug Administration (FDA) does not require safety testing for GE plants. The FDA’s original policy on GE (or GM, for genetically modified) plants was introduced at a press conference at an industry gathering on May 28, 1992 by then Vice-President Dan Quayle as a de-regulatory initiative. The policy was based on the notion “that the new techniques [e.g. genetic engineering] are extensions at the molecular level of traditional methods and will be used to achieve the same goals as pursued with traditional plant breeding,”5 and therefore should be regulated in the same way. In other words, no requirement for human safety testing; instead there are “voluntary safety consultations.”

The lack of adequate safety testing can be seen in the letter FDA sends to the company after completion of a “safety consultation.” For example, the letter sent to Monsanto on September 25, 1996 about one of their first Bt-corn varieties, MON810, states, “Based on the safety and nutritional assessment you have conducted, it is our understanding that Monsanto has concluded that corn grain and forage derived from the new variety are not materially different in composition, safety, or other relevant parameters from corn grain and forage currently on the market, and that they do not raise issues that would require premarket review or approval by FDA” bold added. 6 Note that FDA does not state its own opinion about the safety of this crop; it only states what the company believes. The letters for all 84 “safety consultations” done since the Flavr Savr tomato contain basically the same language. This clearly shows that the FDA does not conduct safety assessments.

Other scientists have noted the lack of proper safety testing. For example, Dr. Belinda Martineau, the scientist who conducted the safety studies on the first GE plant, the Flavr Savr tomato (engineered for long shelf life) at Calgene, points out in her book First Fruit: the Creation of the Flavr Savr Tomato and the Birth of Biotech Foods: “Rather than personal opinion, the scientific community should give the public facts, hard facts; the results of studies that indicate these foods are safe to eat and that growing them on a large scale will not cause environmental damage. Scientists and regulators throughout the ag biotech industry agree that more public education about genetic engineering research is necessary, but, thus far, few have provided much information beyond how the technology works and the wondrous things that might be done with it. . . . And simply proclaiming that ‘these foods are safe and there is no scientific evidence to the contrary’ is not the same as saying ‘extensive tests have been conducted and here are the results.’ In fact, without further elaboration, ‘no scientific evidence to the contrary’ could be construed as ‘no scientific evidence, period.’ ”7 italics added.

Since the 1992 Statement of Policy on genetically engineered food, FDA has admitted that its original policy was based on a false notion. In 2001, the FDA proposed requiring companies to notify the government at least 120 days before commercializing a transgenic plant variety. As part of that proposed rule, the FDA admits that insertional mutagenesis is a problem and suggests requiring data on each separate transformation event: "[B]ecause some rDNAinduced unintended changes are specific to a transformational event (e.g. those resulting from insertional mutagenesis), FDA believes that it needs to be provided with information about foods from all separate transformational events, even when the agency has been provided with information about foods from rDNA-modified plants with the same intended trait and has had no questions about such foods. In contrast, the agency does not believe that it needs to receive information about foods from plants derived through narrow crosses [e.g. traditional breeding]" italics added (FR 66(12), pg. 4711).8 In other words, FDA has admitted that there is a difference between GE and traditional breeding. In spite of this, FDA is still following the 1992 policy rather than the 2001 policy.

Global agreement has been reached on what constitutes proper safety assessment of foods derived from GE plants, yet such suggested studies have not been carried out on GE Bt corn (or any other GE crop approved in the US). In 2003, the Codex Alimentarius Ad Hoc Task Force on Foods Derived from Biotechnology reached agreement on a “Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants.” 9 This Guideline was formally adopted by the full Codex Alimentarius Commission in 2003, and was updated in 2008.


This is important because in the case of trade disputes, the World Trade Organization considers that, in terms of food safety, the standards or guidelines of Codex Alimentarius are deemed the global science-based standard and, thus, immune to trade challenges, i.e. they are not considered to be a “non-tariff trade barrier.” At present, none of the GE plants on sale in the US can meet this standard.

Since the US does not require safety assessments of GE plants, while the Codex Alimentarius Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants states that such a food safety assessment should be done, this means the US cannot meet the global standards for safety assessment of GE foods. Consequently, countries that require food safety assessments for GE foods could block shipments of such GE foods from the US without fear of losing a WTO challenge.

We believe that the US should require safety assessments on foods derived from GE organisms, and that those safety assessments should be consistent with the guidelines developed by the Codex Alimentarius Ad Hoc Intergovernmental Task Force on Foods Derived from Biotechnology so that US food products are not potentially subject to a WTO challenge from another country.

2. Significant scientific uncertainty exists in the risk analysis of foods derived from GE and this is recognized in the Codex. In fact, the Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants has a whole section on unintended effects which clearly states that they can have an unintended effect on human health: “Unintended effects due to genetic modification may be subdivided into two groups: those that are “predictable” and those that are “unexpected” . . . A variety of data and information are necessary to assess unintended effects because no individual test can detect all possible unintended effects or identify, with certainty, those relevant to human health.”10 italics added (paras 16 and 17, CAG/GL 45-2003). Furthermore, this section recognizes that the unintended effects could also be caused by changes in genes that are expressed at the molecular level and how the gene products are processed: “Molecular biological and biochemical techniques (that) can also be used to analyze potential changes at the level of gene transcription and message translation that could lead to unintended effects” (para 16, CAG/GL 45-2003).

3. Labeling of GE food can serve as a risk management measure to deal with scientific uncertainty. This would be consistent with the recommendations developed by the Codex Alimentarius Ad Hoc Intergovernmental Task Force on Foods Derived from Modern Biotechnology and adopted by the Codex Alimentarius Commission in 2003.
The Principles for the Risk Analysis of Foods Derived from Modern Biotechnology (CAC/GL 44—2003) clearly state that labeling can be used as a risk management option to deal with scientific uncertainties associated with the risk assessment of GE foods: “18. Risk managers should take into account the uncertainties in the risk assessment and implement appropriate measures to manage these uncertainties. 19. Risk management measures may include, as appropriate, food labeling, conditions for market approval and post-market monitoring.”11

If there are unexpected adverse health effects that happen as a result of GE, then labeling could serve as a risk management mechanism that would allow us to track such health problems if they arose. If a food with GE ingredients is not labeled as such, and that food causes an adverse health effect, such as an allergic reaction, there would be virtually no way to determine that the GE process was linked to the adverse health effect. For example, suppose a company decides to insert a synthetic gene, which codes for a modified protein, into tomatoes. Suppose that the novel protein causes a strong but delayed (say by 24 hours) allergic reaction (e.g. serious rash, upset stomach, or anaphylactic shock) in some relatively small subset of the population. To start with, doctors would have an extremely difficult time identifying the source of the problem. If the offending tomato variety is not very prevalent (i.e. does not have a large market share), then the regular allergy test, making a list of all foods eaten in the last 24 hours, might not uncover the tomato as the source of the problem (the person would have to obtain and eat the offending tomato variety a second time and get the same reaction). It might well take large numbers of people being adversely affected and having the offending tomato variety be a large share of the market before there would be any hope of figuring out what was causing the problem.

Even if the food has undergone rigorous premarket safety testing, scientific uncertainties remain associated with the risk analysis. In addition, when a large population (in the millions or tens of millions) is exposed to a GE food, rare unexpected health problems can appear. Take the case of Vioxx, a drug that was found to be safe in premarket testing but had to be removed from the market after adverse health effects were seen when the drug was used by large numbers of people. Because these drugs are labeled, doctors are able to associate the unexpected health problem with the specific drugs. With GE foods, labeling would serve a similar purpose.

In addition to FDA not requiring any premarket safety testing, there is virtually no independent safety testing of these crops in the US due to intellectual property rights. When farmers buy GE seed in the US, they invariably must sign a product stewardship agreement which forbids them from giving such seeds to researchers.12 In addition, researchers must get permission from the biotech companies before they can do research, which means there is a paucity of independent research. Scientists have even been threatened with legal action if they revealed information obtained via freedom-of-information.13 In early 2009 26 public sector scientists in the US took the unprecedented step of writing to the US Environmental Protection Agency (EPA) protesting that “as a result of restricted access, no truly independent research can be legally conducted on many critical questions regarding the technology.”14 As a result, the editors of Scientific American published a perspective stating that “we also believe food safety and environmental protection depend on making plant products available to regular scientific scrutiny. Agricultural technology companies should therefore immediately remove the restriction on research from their end-user agreements.” We concur and believe that only truly independent  safety tests will give us an answer about the safety of GE foods. In the meantime, it’s crucial that GE foods be labeled as a risk management measure to deal with scientific uncertainty.

4. We believe that consumers have a right to know what is in the food they eat. A number of polls from 1995 to 2011 have found that between 70% and 95% of people polled supported mandatory labeling.15 “Information of material importance” to consumers is far broader than just “changes in the organoleptic, nutritional or functional properties” of a food. The fact that more than 850,000 people have sent comments to the FDA in support of a citizen’s petition asking FDA to require labeling of GE foods, shows that consumers overwhelmingly want food from GE sources to be labeled as such.16 In addition, on March 12, 2012, US Senator Barbara Boxer and Congressman Peter DeFazio joined with 53 other Senate and House lawmakers in sending a letter urging the FDA to require the labeling of GE foods.17

FDA has tried to argue that they don’t have the authority to label GE foods unless there is a “material change” in the food, which FDA defines as “change in the organoleptic, nutritional or functional properties” of the food that is not obvious to the consumer at the point of purchase.
We strongly disagree with FDA and feel that they are trying to ignore their own history. In the past FDA has required labeling under the “material fact” analysis that did not entail a change in nutritional value, organoleptic properties, or functional characteristics of a food. FDA’s authority to require labeling of all foods derives, in part from section 201(n) and 403(a)(1) of the Federal Food Drug and Cosmetic Act. A label is considered “misleading” if it “fails to reveal facts that are material in light of representations made. . .” bold added. FDA articulated this position in the 1986 final rule that required labeling of irradiated foods, even though the FDA had ruled that irradiated foods were safe. FDA stated in this final rule on food irradiation that the large number of respondents who asked for labeling of retail products was one factor indicative of the materiality of food irradiation: “Whether information is material under section 201(n) of the act depends not on the abstract worth of the information but on whether consumers view such information as important and whether the omission of label information may mislead a consumer. The large number of consumer comments requesting retail labeling attest to the significance placed on such labeling by consumers”18 emphasis added. Thus, materiality clearly does not always include “some change in nutritional value, organoleptic properties, or functional characteristics” of the food.

Material facts other than material changes have long been required for other reasons that are important to consumers. Labeling the source of protein hydrolysates was required because of the concern of vegetarians and observant Jews and Muslims. As the FDA stated, “the food source of a protein hydrolysate is information of material importance for a person who desires to avoid certain foods for religious or cultural reasons.”19 Thus, “information of material importance” to a consumer is not simply restricted to “information about the characteristics of a food.”

In 2007, FDA proposed a revision to their labeling requirements for irradiated foods, such that labeling would only be required on those irradiated foods in which the irradiation has lead to a “material change”—defined as a “change in the organoleptic, nutritional or functional properties”—in the food that is not obvious to the consumer at the point of purchase. Thus, not all irradiated food would be required to be labeled. This proposed revision to the irradiation labeling standard went nowhere. However, this attempted weakening of the food irradiation labeling standard clearly demonstrates that FDA is now trying to narrow the concept of “materiality,” so as to avoid the labeling of GE foods.

A number of recent scientific studies have pointed out unexpected effects in genetically engineered crops and have shown that they can lead to potential adverse health effects:

GE plant materials are finding their way into the human body. A study done by Canadian scientists and published last year was very disturbing. The study involved 30 pregnant and 39 non-pregnant women in Quebec, Canada.20 Blood was taken from women and from fetal cord blood and tested for 3 pesticides associated with GM: glyphosate, glufosinate, and Cry1Ab. The surprising finding was that Cry1Ab was detected in 93% and 80% of maternal and fetal blood samples, respectively and in 69% of tested blood samples from nonpregnant women. The scientists noted that “trace amounts of the Cry1Ab toxin were detected in the gastrointestinal contents of livestock fed on GM corn, raising concerns about this toxin in insect-resistant GM crops; [suggesting] (1) that these toxins may not be effectively eliminated in humans and (2) there may be a high risk of exposure through consumption of contaminated meat.”21 They concluded, “To our knowledge, this is the first study to highlight the presence of pesticidesassociated genetically modified foods in maternal, fetal and nonpregnant women’s blood. 3-MPPA and Cry1Ab toxins are clearly detectable and appear to cross the placenta to the fetus. Given the potential toxicity of these environmental pollutants and the fragility of the fetus, more studies are needed, particularly those using the placental transfer approach.”22

A major food safety concern for GE plants is allergenicity. In 2001, the report of a Joint Food and Agriculture Organization/World Health Organization (FAO/WHO) Expert Consultation on Allergenicity of Foods Derived from Biotechnology, held at WHO headquarters in Rome, laid out a detailed protocol (a decision tree) for evaluating the allergenicity of GE foods.23 None of the GE crops, including GE corn, on the market in the U.S. have been assessed using such a protocol.

Various types of scientific evidence suggest that Bt corn may contain a transgenic allergen. Bt corn contains various modified endotoxins from the soil bacterium Bacillus thuringiensis (Bt). These δ-endotoxins are called Cry proteins, in particular Cry1Ab or Cry1Ac. A study of farmworkers who worked in onion fields where foliar Bt sprays were used found that 2 of them contained antibodies to the δ-endotoxins, Cry1Ab and/or Cry1Ac, consistent with an allergy.24 A survey of Bt cotton farmers in India done by local doctors found that numerous Bt cotton farmers, as well as workers in a ginning factory, had symptoms consistent with an allergic reaction to Bt cotton within a year of the introduction of Bt cotton in the region. 25

One of the endotoxins found in GE corn, Cry1Ac, has been found to have sequence similarity to a known human allergen. One of the first steps in assessing the allergic potential of a protein (most allergens are proteins) is to determine if it has similarity in amino acid sequence to a known allergen. A paper published in 1998 by the head of FDA’s own biotechnology studies branch, Dr. Steven Gendel, found significant amino acid sequence similarity between Cry1Ab and Cry1Ac (found in Bt maize and Bt cotton) and vitellogenin, the main precursor to egg yolk protein and a known allergen, as well as between Cry3A (Bt potatoes) and β-lactoglobulin, a major milk allergen. 26

Scientific studies also show Cry1Ac has a strong effect on the immune system as well as being a potent adjuvant. A series of five studies carried out by a team of scientists from two Mexican universities and from Cuba have suggested that the Cry1Ac protein has immunogenic and allergenic properties. A mouse study demonstrated that the Cry1Ac was a potent systemic and mucosal adjuvant: “We conclude that Cry1Ac is a mucosal and systemic adjuvant as potent as CT [cholera toxin] which enhances mostly serum and intestinal IgG antibody responses”.27 Another mouse study which further characterized the mucosal and systemic immune response induced in mice “confirm[ed] that the Cry1Ac protoxin is a potent immunogen able to induce a specific immune response in the mucosal tissue, which has not been observed in response to most other proteins italics added. 28 Another study concluded, “We think that previous to commercialization of food elaborated with self-insecticide transgenic plants it is necessary to perform toxocological tests to demonstrate the safety of Cry1A proteins for the mucosal tissue and for the immunological system of animals.” 29 Such tests have never been carried out on GE Bt-corn.

Corn allergen gene turned on as result of genetic engineering. A carefully designed study involved growing Monsanto’s Bt corn varieties, MON 810, in a growth chamber along with its near isoline (corn variety engineered to produce MON 810). Since MON 810 and its near isoline are grown in the same environment, the only difference in the plants will be due to the effect of genetic engineering. This was a proteomic study, which is a study of the expressed proteins, not just of the protein(s) expressed as a result of genetic engineering.

Proteomic studies are a good way to detect unintended effects associated with genetic engineering, particularly the disruptive effects due to the random insertion of a transgene. The study found that 43 proteins in the MON 810 plants were significantly disrupted, compared to the non-GE near isoline. As the study notes, “a newly expressed spot (SSP 6711) corresponding to a 50 dDa gamma zein, a well-known corn allergenic protein, has been detected. Moreover, as a major concern, a number of seed storage proteins (such as globulins and vicilin-like embryo storage proteins) exhibited truncated forms having molecular masses significantly lower than the native ones.”30 The safety implications of the truncated seed storage proteins are unknown, as no feeding study was done. So, this study demonstrates that the process of genetic engineering turned on a known corn allergen gene that is normally turned off as well as caused changes to the main proteins found in the seed.

Bt corn may cause adverse effects on gut and peripheral immune response. A carefully designed study (MON 810 and near isoline grown simultaneously in neighboring fields in Landriano, Italy, to control for environmental effects) done by Italian scientists involved feeding a diet containing MON 810 or its near isoline to mice in vulnerable conditions, e.g. weaning and old mice, and looking at a variety of measures of the gut and peripheral immune response. The main finding was that “compared to the control maize, MON810 maize induced alterations in the percentage of T and B cells and of CD4+, CD8+, γδT, and αβT subpopulations of weaning and old mice fed for 30 or 90 days, respectively, at the gut and peripheral sites. An increase of serum IL-6, IL-13, IL-12p70, and MIP-1β after MON810 feeding was also found. These results suggest the importance of the gut and peripheral immune response to GM crop ingestion as well as the age of the consumer in the GMO safety evaluation” bold added. 31

A meta-analysis of feeding studies involving GE crops suggests health problems and that longer term studies are needed. A carefully designed metaanalysis was done of 19 published studies involving mammals fed GE corn or soy.32 The meta-analysis also included the raw data from a number of 90-daylong feeding studies that were obtained as a result of court action or official requests. The data included biochemical blood and urine parameters of mammals eating GE crops with numerous organ weights and histopathology findings. The meta-analysis of all the in vivo studies found that the majority of statistically significant results came from parameters involving the liver or kidney. The authors conclude that longer-duration tests are needed, noting that “90-d tests are insufficient to evaluate chronic toxicity, and the signs highlighted in the kidneys and livers could be the onset of chronic diseases. However, no minimal length for the tests is yet obligatory for any of the GMOs cultivated on a large scale, and this is socially unacceptable in terms of consumer health protec We are suggesting that the studies should be improved and prolonged, as well as being made compulsory, and that the sexual hormones should be assessed too moreover, reproductive and multigenerational studies ought to be conducted too.” 33

A 2005 animal study on transgenic peas found that the genetic engineering process unexpectedly turned a protein that is relatively “safe” into one that causes adverse health effects and increased the potential for adverse effects in other proteins. 34 A group of Australian scientists looked at the transfer of a gene from beans into peas. The gene codes for a protein, a-amylase inhibitor (aAI), that confers resistance to certain weevil pests. The aAI in raw beans inhibits the action of amylase, an enzyme that degrades starch. So aAI in raw beans can cause gastrointestinal problems in humans. When beans are cooked, the aAI is easily digested and causes no problems. However, when the gene for aAI was inserted into peas, the resultant protein had the same amino acid sequence as the bean aAI, yet the structure of the protein had been subtly altered (through a process called post-translational processing), causing an immunological reaction in mice fed the transgenic peas, but not in mice fed normal beans. The adverse/immunological reaction to the transgenic pea aAI was not mitigated by boiling the peas. The mice fed transgenic peas, in addition to developing an immunological reaction to the pea aAI, also developed an immunological reaction to a number of proteins normally found in peas; mice fed these same proteins from non-engineered peas developed a far smaller immunological response, thus demonstrating that the transgenic pea aAI acts as an adjuvant to increase the immunogenicity of native pea proteins. This new study involving aAI is extremely important. This study found tha
moving the same gene between two relatively closely related plants (common beans and peas) can result in a protein that, although it contains the exact same amino acid sequence, is relatively safe in the donor plant (common beans), but is potentially harmful in the recipient plant (peas) and can increase the potential hazardousness of other proteins found in peas. These are all clearly unintended and unexpected effects that clearly result in an adverse health effect.

New data confirm unintended and unexpected effect from genetic engineering. Other studies in the last 5 years have found all sorts of unexpected changes/effects in GE crops. A detailed molecular characterization of various GE crops (three different Bt maizes, an herbicide-tolerant maize, RoundUp Ready soybean, and a male-sterile canola) currently on the market, done in Belgium, has shown that of the transgenic lines looked at, all but one were found to have differences in the molecular characterization in products on the market compared to the original structure reported by the company.35 Except for the canola, all these reports found that the structure (e.g. molecular characterization) of transgenic inserts as reported by the companies in their initial submission were different than the structure found in subsequent studies. The differences in structure involved rearranged inserts, partial copies of genes inserted, multiple copies of transgenes inserted, scrambling of DNA near the border of the transgenic inserts, etc., suggesting that the transgenic lines are unstable and/or more likely to result in unintended effects. In fact, in virtually all the cases, the SBB/IPH recommends that further analysis “should be done to determine the presence of chimaeric open reading frames in the border integration sequences”, e.g. an analysis should be done to see if there are any unexpected proteins being produced.

A paper reviewing the food safety issues associated with genetically engineered crops listed a range of documented unintended effects and concluded that “The development and validation of new profiling methods such as DNA microarray technology, proteomics, and metabolomics for the identification and characterization of unintended effects, which may occur as a result of the genetic modification, is recommended.” 36

An Annex to the Codex Plant Guideline on the assessment of possible allergenicity states that no definitive test exists to accurately predict allergenicity of a given protein: “At present, there is no definitive test that can be relied upon to predict allergic response in humans to a newly expressed protein.”37 So there is scientific uncertainty around assessment of potential allergenicity of foods derived from GE/GM. Furthermore, a study done by Dutch scientists, using a modified, and more conservative, methodology for screening transgenic proteins for potential allergenicity (e.g. the analysis of sequence homology to known food and environmental allergens) as laid out in the Joint FAO/WHO Expert Consultation on Allergenicity of Foods Derived from Biotechnology (January, 2001), found that a number of transgenic proteins have significant sequence homology to known allergens and recommended further study for a number of these proteins: “Many transgenic proteins have identical stretches of six or seven amino acids in common with allergenic proteins. Most identical stretches are likely to be false positives. As shown in this study, identical stretches can be further screened for relevance by comparison with linear IgEbinding epitopes described in the literature. In the absence of literature values on epitopes, antigenicity prediction by computer aids to select potential antibody binding sites that will need verification of IgE binding by sera tests. Finally, the positive outcomes of this approach warrant [papaya ringspot virus coat protein, acetolactate synthase GH50, and glyphosate oxidoreductase] further clinical testing for potential allergenicity” 38 - bold added. Another study done by Dr. Steven Gendel of the US Food and Drug Administration found that there was significant sequence similarity between a gene in Bt maize and Bt cotton (e.g. Cry1Ab or Cry1Ac) and an egg yolk allergen and recommended further study: “the similarity between Cry1A(b) and vitellogenin might be sufficient to warrant additional evaluation.” 39

While science demonstrates the need to track potential health impacts of genetically engineered food, there is also broad support for labeling genetically engineered food as indicated by the following endorsements by the public health, nursing, medical and healthcare communities:

• In 2001, the American Public Health Association passed a resolution entitled Support of the Labeling of Genetically Modified Foods which “Resolves that APHA declare its support that any food product containing genetically modified organisms be so labeled.” 40

In 2008, the American Nurses Association adopted a resolution on Healthy Food in Health Care, which specifically, “Supports the public’s right to know through support of appropriate food labeling including country-of-origin and genetic modification…” 41

In 2011, the Illinois Public Health Association adopted a resolution supporting “legislation and/or regulations that require clearly labeling food with genetically engineered ingredients.” 42

Catholic Healthcare West (a network of 41 hospitals and 10,000 physicians) avoids genetically engineered food and advocates for public policies that include the labeling of genetically engineered food. 43

Furthermore, twenty state legislatures have introduced bills to require mandatory labeling of GE foods. (IL, AK, CA, NC, IA, MD, NY, OR, RI, WV, VT, TN, HI, CT, MA, MO, NJ, WA, MI, NH).
-----------
1 Consumers Union is the public policy and advocacy division of Consumer Reports. Consumers Union works for telecommunications reform, health reform, food and product safety, financial reform, and other consumer issues. Consumer Reports is the world’s largest independent product-testing organization. Using its more than 50 labs, auto test center, and survey research center, the nonprofit rates thousands of products and services annually. Founded in 1936, Consumer Reports
has over 8 million subscribers to its magazine, website, and other publications, and a few noncommercial grants. Roughly 8 million people subscribe to Consumer Reports or Consumer Reports online.

2 At: http://www.codexalimentarius.net/web/standard_list.do?lang=en

3 Hansen, M. 2000. Genetic engineering is not an extension of conventional plant breeding: How genetic engineering differs from conventional breeding, hybridization, wide crosses and horizontal gene transfer. 13 pp. At: http://www.consumersunion.org/food/widecpi200.htm  

4 Email from WorldHealthOrganizationNews@who.int  to journalists dated July 9, 2011.
 5 Pg. 22991 in FDA. Statement of Policy: Foods Derived From New Plant Varieties, May 29, 1992, Federal Register vol. 57, No. 104. At: http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/Biotechnology/ucm096095.htm

6 At:http://www.fda.gov/Food/Biotechnology/Submissions/ucm161107.htm

7 Pp. 232-233 in Martineau, B. 2001. First Fruit. McGraw-Hill.

8 Pg. 4711 in FDA. Premarket Notice Concerning Bioengineered Foods. Federal Register January 18, 2001. Federal Register Vol. 51(12): pp. 4706 – 4738. At: http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/Biotechnology/ucm096149.htm

9 See Codex Alimentarius Guideline 45. At: http://www.codexalimentarius.net/web/standard_list.do?lang=en

10 pars 18, 19 in CAC/GL 44—2003. At: http://www.codexalimentarius.net/web/standard_list.do?lang=en

11 At: http://www.codexalimentarius.net/web/standard_list.do?lang=en

12 Waltz, E. 2009. Under wraps. Nature Biotechnology, 27(10): 880-882. At: http://www.emilywaltz.com/Biotech_crop_research_restrictions_Oct_2009.pdf

13 IBID

14 http://www.scientificamerican.com/article.cfm?id=do-seed-companies-control-gm-crop-research

15 http://gefoodlabels.org/gmo-labeling/polls-on-gmo-labeling /


16 http://gefoodlabels.org/

17 IBID

18 Pg. 13380. FDA. Final Rule on Food Irradiation. Federal Register April 18, 1986, Federal Register, Vol. 51, pg. 13376

19 56 FR 28592 [1991]

20 Aris, A and S Leblanc. 2011. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reproductive Toxicology, 31(4): 528-533.

21 Pg. 533 in Aris, A and S Leblanc. 2011. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reproductive Toxicology, 31(4): 528-533.
22 IBID

23 FAO/WHO. 2001. Evaluation of Allergenicity of Genetically Modified Foods. Report of a Joint FAO/WHO Expert Consultation on Allergenicity of Foods Derived from Biotechnology, January 22-25, 2001. Rome, Italy. At: ftp://ftp.fao.org/es/esn/food/allergygm.pdf

24 Bernstein, I.L., Bernstein, J.A., Miller, M., Tierzieva, S., Bernstein, D.I., Lummus, Z., Selgrade, M.K., Doerfler, D.L. and V.L. Seligy. 1999. Immune responses in farm workers after exposure to Bacillus thuringiensis pesticides. Environmental Health Perspectives, 107(7): 575-582. At: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1566654/pdf/envhper00512-0103.pdf

25 Gupta, A. et al. 2006. Impact of Bt cotton on farmers’ health (in Barwani and Dhar District of Madhya Pradesh).
At: http://www.lobbywatch.org/archive2.asp?arcid=6265 and http://www.lobbywatch.org/archive2.asp?arcid=6266

26 Gendel, S.M. 1998. The use of amino acid sequence alignments to assess potential allergenicity of proteins used in genetically modified foods. Advances in Food and Nutrition Research, 42: 44-61.

27 Vazquez-Padron, R.I., Moreno-Fierros, L., Neri-Bazan, L., de la Riva, G.A. and R. Lopez-Revilla. 1999.
Bacillus thuringiensis Cry1Ac protoxin is a potent systemic and mucosal adjuvant. Scandinavian Journal of Immunology 49: 578-584.

28 Pg. 147 in Vazquez-Padron, R.I., Moreno-Fierros, L., Neri-Bazan, L., Martinez-Gil, A.F., de-la-Riva, G.A., and R. Lopez-Revilla. 2000a. Characterization of the mucosal and systemic immune response induced by Cry1Ac protein from Bacillus thuringiensis HD 73 in mice. Brazilian Journal of Medical and Biological Research 33: 147155.

29 Pg. 58 in Vazquez-Padron, R.I., Moreno-Fierros, L., Neri-Bazan, L., Martinez-Gil, A.F., de-la-Riva, G.A., and R. Lopez-Revilla. 2000a. Characterization of the mucosal and systemic immune response induced by Cry1Ac protein from Bacillus thuringiensis HD 73 in mice. Brazilian Journal of Medical and Biological Research 33: 147-155.

30 Pg. 1855 in Zolla, L., Rinalducci, S., Antonioli, P and P.G. Righetti. 2008. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. Journal of Proteome Research, 7: 1850-1861. At: http://stopogm.net/webfm_send/288

31 Pg. 11533 in Finamore, A., Roselli, M., Britti, S., Monastra, G., Ambra, R., Turrini, A. and E. Mengheri. 2008. Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. Journal of Agriculture and Food Chemistry, 56: 11533-11539. At: http://www.giovannimonastra.info/documenti_pdf/Monastra_J_Agr_Food_Chem_2.pdf

32 Séralini, G-E, Mesnage, R., Clair, E., Gress, S., de Vendômois, JS and D. Cellier. Genetically modified crops safety assessments: present limits and possible improvements. Environmental Sciences Europe, 23: 10. At: http://www.enveurope.com/content/pdf/2190-4715-23-10.pdf

33 Pg. 1 in IBID

34 Prescott, VE, Campbell, PM, Moore, A, Mattes, J, Rothenberg, ME, Foster, PS, Higgins, TJV and SP Hogan. 2005. Transgenic expression of bean α-amylase inhibitor in peas results in altered structure and immunogenicity. Journal of Agricultural and Food Chemistry, 53: 9023-9030.

35 Dr. Moens, with the Service of Biosafety and Biotechnology (SBB) of the Scientific Institute of Public Health (IPH), a government agency reported on the molecular characterization of the genetic map for six transgenic crops: 3 different Bt maizes—Bt 176, Syngenta (www.biosafety.be/TP/MGC_reports/Report_Bt176.pdf); MON 810, Monsanto (www.biosafety.be/TP/MGC_reports/Report_MON810.pdf) ; Bt11, NorthrupKing (www.biosafety.be/TP/MGC_reports/Report_Bt11.pdf ) —a herbicide tolerant maize (LibertyLink maize, Bayer)(www.biosafety.be/TP/MGC_reports/Report_T25.pdf) , glyphosate tolerant soybeans (RoundUp Ready soybeans, Monsanto) (www.biosafety.be/TP/MGC_reports/Report_MON810.pdf ) , and a canola engineered for male sterility (Ms8 x Rf3, Bayer Cropscience)

36 Pg. 503 in Kuiper, HA, Kleter, GA, Notebom, HPJM and EJ Kok. 2001. Assessment of food safety issues related to genetically modified foods. The Plant Journal, 27(6): 503-528.
 
37 para 2, Annex, CAG/GL 45-2003. At: : http://www.codexalimentarius.net/web/standard_list.do?lang=en

38 Pg. 1 in: Kleter, GA and ACM Peijnenburg. 2002. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE – binding linear epitopes of allergens. BMC Structural Biology, 2:8. Accessed at http://www.biomedcentral.com/1472-6807/2/8

39 Pg. 44 in Gendel, S.M. 1998. The use of amino acid sequence alignments to assess potential allergenicity of proteins used in genetically modified foods. Advances in Food and Nutrition Research, 42: 44-61.


6. People will not be allowed to grow their own food



S510 PASSED:
Food Safety Bill S510 was rushed through the Senate

Senate Bill S510 Makes it illegal
to Grow, Share, Trade or Sell Homegrown Food



"If people let the government decide what foods they eat and what medicines they take, their bodies will soon be in as sorry a state as are the souls of those who live under tyranny." ~Thomas Jefferson

According to Foodforfreedom:

S 510, the Food Safety Modernization Act, may be the most dangerous bill in the history of the US

1. It puts all US food and all US farms under Homeland Security and the Department of Defense, in the event of contamination or an ill-defined emergency

2. It would end US sovereignty over its own food supply by insisting on compliance with the WTO, thus threatening national security.

3. It would remove the right to clean, store and thus own seed in the US, putting control of seeds in the hands of Monsanto and other multinationals, threatening US security

4. It deconstructs what is left of the American economy. It takes agriculture and food, which are the cornerstone of all economies, out of the hands of the citizenry, and puts them under the total control of multinational corporations

Senate Bill S510 Makes it illegal to Grow, Share, Trade or Sell Homegrown Food


Since the story first broke, a lot has happened. One reason for this could be that food is being poisoned. Collecting rainwater is now illegal in many states. Your intake is being controlled. For more information, visit the following articles as well:


S 510 is hissing in the grass


By Steve Green

S 510, the Food Safety Modernization Act, may be the most dangerous bill in the history of the US. It is to our food what the bailout was to our economy, only we can live without money.

"If accepted [S 510] would preclude the public's right to grow, own, trade, transport, share, feed and eat each and every food that nature makes. It will become the most offensive authority against the cultivation, trade and consumption of food and agricultural products of one's choice. It will be unconstitutional and contrary to natural law or, if you like, the will of God." ~Dr. Shiv Chopra, Canada Health whistleblower



Senate Bill S510
Makes it illegal to Grow, Share, Trade or Sell Homegrown Food
Jack McLamb



Senate Bill S510 Makes it illegal to
Grow, Share, Trade or Sell Homegrown Food



Feds to limit gardening? (Monsanto, seeds, Ron Paul)